9,296 research outputs found

    Efficient Real Space Solution of the Kohn-Sham Equations with Multiscale Techniques

    Full text link
    We present a multigrid algorithm for self consistent solution of the Kohn-Sham equations in real space. The entire problem is discretized on a real space mesh with a high order finite difference representation. The resulting self consistent equations are solved on a heirarchy of grids of increasing resolution with a nonlinear Full Approximation Scheme, Full Multigrid algorithm. The self consistency is effected by updates of the Poisson equation and the exchange correlation potential at the end of each eigenfunction correction cycle. The algorithm leads to highly efficient solution of the equations, whereby the ground state electron distribution is obtained in only two or three self consistency iterations on the finest scale.Comment: 13 pages, 2 figure

    Quasi-Chemical and Structural Analysis of Polarizable Anion Hydration

    Full text link
    Quasi-chemical theory is utilized to analyze the roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl−^-, Br−^-, and I−^-. Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The quasi-chemical approach exactly partitions the solvation free energy into inner-shell, outer-shell packing, and outer-shell long-ranged contributions by means of a hard-sphere condition. Small conditioning radii, even well inside the first maximum of the ion-water(oxygen) radial distribution function, result in Gaussian behavior for the long-ranged contribution that dominates the ion hydration free energy. The spatial partitioning allows for a mean-field treatment of the long-ranged contribution, leading to a natural division into first-order electrostatic, induction, and van der Waals terms. The induction piece exhibits the strongest ion polarizability dependence, while the larger-magnitude first-order electrostatic piece yields an opposing but weaker polarizability dependence. In addition, a structural analysis is performed to examine the solvation anisotropy around the anions. As opposed to the hydration free energies, the solvation anisotropy depends more on ion polarizability than on ion size: increased polarizability leads to increased anisotropy. The water dipole moments near the ion are similar in magnitude to bulk water, while the ion dipole moments are found to be significantly larger than those observed in quantum mechanical studies. Possible impacts of the observed over-polarization of the ions on simulated anion surface segregation are discussed.Comment: slight revision, in press at J. Chem. Phy

    Equilibration between Translational and Rotational Modes in Molecular Dynamics Simulations of Rigid Water Requires a Smaller Integration Time-Step Than Often Used

    Full text link
    In simulations of aqueous systems it is common to freeze the bond vibration and angle bending modes in water to allow for a longer time-step δt\delta t for integrating the equations of motion. Thus δt=2\delta t = 2 fs is often used in simulating rigid models of water. We simulate the SPC/E model of water using δt\delta t from 0.5 fs to 3.0 fs. We find that for all but δ=0.5\delta = 0.5 fs, equipartition between translational and rotational modes is violated: the rotational modes are at a lower temperature than the translation modes. The autocorrelation of the velocities corresponding to the respective modes shows that the rotational relaxation occurs at a time-scale comparable to vibrational periods, invalidating the original assumption for freezing vibrations. δt\delta t also influences thermodynamic properties: the mean system potential energies are not converged until δt=0.5\delta t = 0.5 fs, and the excess entropy of hydration of a soft, repulsive cavity is also sensitive to δt\delta t

    Application of A Distributed Nucleus Approximation In Grid Based Minimization of the Kohn-Sham Energy Functional

    Full text link
    In the distributed nucleus approximation we represent the singular nucleus as smeared over a smallportion of a Cartesian grid. Delocalizing the nucleus allows us to solve the Poisson equation for theoverall electrostatic potential using a linear scaling multigrid algorithm.This work is done in the context of minimizing the Kohn-Sham energy functionaldirectly in real space with a multiscale approach. The efficacy of the approximation is illustrated bylocating the ground state density of simple one electron atoms and moleculesand more complicated multiorbital systems.Comment: Submitted to JCP (July 1, 1995 Issue), latex, 27pages, 2figure
    • …
    corecore